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Abstract-In this paper, a parallel implementation of the 
MPEG-2 video encoder on various parallel and distributed 
platforms is presented. We use a data-parallel approach 
and exploit parallelism within each frame, which makes 
our encoder suitable for real-time applications where the 
complete video sequence may not be present on the disk. 
The Express environment is employed as the underly- 
ing message-passing system making our encoder portable 
across a wide range of parallel and distributed architec- 
tures. The encoder also provides control over various pa- 
rameters such as number of processors, size of search win- 
dow, buffer management and bit-rate. It is flexible and 
allows inclusion of fast and new algorithms for different 
stages of the codec, replacing current algorithms. Com- 
parisons of execution times, speedups as well as frame en- 
coding rates using different number of processors are pro- 
vided. In addition, our study reveals the degrees of par- 
allelism and bottlenecks in various computational modules 
of MPEG-2. 

1 INTRODUCTION 

VIDEO codec is comprised of an encoder and a de- A coder, which respectively performs compression and 
decompression of video data. As a video consists of a huge 
amount of data, these operations require a great deal of 
processing in the order of billion operations/sec. Since 
video encoding, specially in software, is much more com- 
plex and time-consuming for real-time applications com- 
pared to decoding, it is always advantageous to speed up 
the computation. This paper presents a software parallel 
implementation of a video codec (MPEG-2). 

MPEG-2 embodies different modules some of which are 
very computation intensive. It is a generic standard de- 
signed to support variety of applications, several bit-rates 
of 2 Mbps and up, and various qualities and services. The 
encoder requires extensive computation to fully support 
applications such as HDTV, video-on-demand (VOD), 
video communications on ATM networks etc. 

In [7] a SIMD implementation of the H.261 has been 
reported with a frame rate of about 5 fps (frames/sec). 
Parallel MPEG-1 video encoding with a performance of 
about 4 fps has been documented in [4]. It was modified 
[lo] to run on the Intel Touchstone Delta and the In- 
tel Paragon. Although faster than real-time performance 
has been claimed in [lo], the drawbacks are crucial. For 
instance, the complete video sequence should be available 
before encoding begins. Also, usable number of processors 
to encode video of given length is limited, which restricts 
the scdability of the problem. Furthermore, it has used 
some special 1 / 0  capability offered by the Delta or the 
Paragon for improved performance, and therefore is not 

portable to other hardware platforms, e.g. a network of 
workstations. There have been some other approaches to 
parallelize codec operations of video sequences [l], [ll], 
[12]. However, they need to use specialized hardware. 

For our implementation, we have chosen the data- 
parallel approach. Our implementation does not employ 
any special-purpose hardware or programming primitives, 
rather it is completely portable, flexible and scalable. The 
implementation is performed on the Intel iPSC/860 and 
various types of networks of workstations. 

The rest of the paper is arranged as follows. Section 
2 describes the parallelization methodology and discusses 
data distribution and communication strategies. Section 
3 provides experimental results. The last section con- 
cludes the paper. 

2 PARALLELIZATION METHODOLOGY 

The parallel implementation of MPEG-2 video en- 
coder has been carried out using a data-parallel or single- 
program multiple-data (SPMD) programming paradigm. 
The SPMD paradigm under Express [9] allows our soft- 
ware to be portable across a wide range of architectures. 
In order to make our parallel implementation scalable, we 
assume that our target processor topology is a 2-D grid. 
This has been achieved using Express’s Cubix program- 
ming model which, in addition to providing overlapped 
data reading capability, can setup a virtual processor grid 
regardless of the hardware topology and then automati- 
cally map the data onto this array of processors. This 
allows us to control the granularity of the problem by en- 
abling it to run on a few workstations in a coarse-grained 
fashion as well as on massively parallel systems in a fine- 
grained fashion. 

The frame data is distributed among the processors, 
each processor having some 8 x 8 blocks of data, depend- 
ing upon the number of processors available. Motion esti- 
mation is performed on independent macroblocks (16 x 16 
block of pixels, abbreviated MB) while other operations 
used 8 x 8 blocks as the basic unit of parallel processing, 
unlike some approaches which use slice as the basic unit. 

2.1 Data Distribution 

Overhead due to interprocessor communication can be 
the major limiting factor for any parallel application. 
Therefore, partitioning the data among the processors 
should be such that minimal interprocessor communica- 
tion is employed. In the current implementation, the 
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whole frame is distributed as evenly as possible to each 
processor. It is also possible to partition the data by just 
apportioning the requisite part of the frame data (one or 
more 16 x 16 macroblock) to the corresponding proces- 
sors as the processors are mapped onto the 2-D grid (see 
Figure l(a)) .  But in that case, it necessitates essential 
communication between processors as the search window 
moves to the boundary during motion estimation . 

Since each processor has enough memory to store the 
entire search window, it is possible to eliminate use of 
overwhelming amount of communication. In this case, the 
frame data is distributed among the processors allowing 
overlap (Figure 1 (b)). Here, each processor is allocated 
some redundant data, which is necessary to form the com- 
plete search area. 

Let us consider P be the height and Q be the width 
of the frame respectively, and let p be the total number 
of processors to be used, with ph and p ,  as the number 
of processors in the horizontal and vertical dimension re- 
spectively. Thus, p = ph x p , .  If the search window size 
is the size of the MBs in a particular processor f W  in 
both dimensions, with overlapped (redundant) data dis- 
tribution, given ph and p , ,  one can determine the size of 
the local frame in each processor, which is given by 

Flguce 1 (b) D.Ln diambuUon with 0veI.p 

Fig. 1. Data distribution with and without overlap. 

In our implementation, the number of processors to be 
used is an input parameter. Therefore, it can be ported 
to environments with a few powerful processors to those 
with a large number of relatively slow processors as well 
as to hardware platforms with limited memory or slow 
communication. 

2.2 Implementation Features 

Our implementation of the MPEG-2 encoder generates 
constant bit-rate streams and supports progressive as well 
as interlaced video. It can also generate MPEG-1 se- 
quences and can support up to three input formats: sepa- 

rate YUV, combined YUV, and PPM. It outputs the en- 
coded sequence as well as relevant statistics and verifies 
legality of the user-given parameters within profile and 
level. The current implementation does not support vari- 
able bit rate encoding, scalable extensions, integer pel mo- 
tion vectors for MPEG-1 (always produces half-pel motion 
vector, which however, gives better quality), low-delay, 
concealment motion vectors, editing of encoded video and 
:scene change rate control. Our parallel implementation is 
based on a sequential MPEG-2 implementation [SI. 
2.3 Motion Estimation 

Block Matching Algorithm (BMA) is the adopted mo- 
tion estimation technique in MPEG. It finds the best 
match for a pixel-block (e.g., 16 x 16) belonging to the 
(current frame, within a user-defined search area in the 
:previous frame. Since this employs a search for the best- 
:matching block, a huge computation is involved, which 
:leads to the motivation of parallel processing. 

As the matching criterion we have chosen Mean Abso- 
lute Difference (MAD), while the search range remains as 
an input parameter. We have employed both exhaustive 
;and fast search (2-D log-search [SI) patterns. The motion 
estimation is performed only on the luminance samples. 
'The chrominance displacement is approximated by halv- 
ing the luminance displacement. In order to further im- 
]prove prediction accuracy, after doing an integral full-pel 
search, a half-pel search is also done on a neighborhood of 
eight bilinearly interpolated luiminance samples from the 
ireconstructed reference frame. 
<2.g DCT and 4DCT 

Discrete Cosine Transform (DCT) is used for spatial 
iyedundancy reduction. In our implementation with full- 
search motion estimation, for DCT, standard row-column 
approach is used, while for IDCT, Wang's algorithm 1131 is 
used. With log-search for motion estimation, both DCT 
iind IDCT have used Wang's algorithm with double pre- 
cision. The DCT and IDCT are performed on the 8 x 8 
pixel blocks. The same serial program is executed on each 
processor to compute DCT or IDCT for as many blocks 
belonging to its local share of the frame data. So there is 
110 interprocessor data movement. 
2.5 Rate Control and Adaptive Quantization 

Our implementation holds fast a single pass coding 
viewpoint and does not use any a priori measurement 
i o  guide the allocation of bits at the global layers. The 
complex bit allocation process is splitted into a number 
of independent stages, coincident with the various layers 
of MPEG-2 video. At the highest stage, alike [3], a group 
of pictures (GOP) becomes the edge where variable size 
coded pictures are mapped into a constant channel rate. 
The allocation of target bit for the current picture be- 
ing encoded is based or1 a global bit budget for the GOP, 
and a ratio of weighted relative coding complexities of the 
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three picture types (I, P, B). Coding complexity is esti- 
mated in each processor as the product of the average 
MB quantization stepsize and the number of bits gener- 
ated by each processor. The local bit allocation for the 
current MB is based on two measurements: the deviance 
from estimated buffer fullness for the current MB and the 
normalized spatial activity. The picture-fragment in each 
processor is approximated and estimated to have a uni- 
form distribution of bits. If the local trend of generated 
bits begin to deviate from this estimation, a compensa- 
tion factor appears to control the MB quantization scale. 
The global bit budget is broadcasted to all the processors 
to perform the allocation of target bit. 

3 EXPERIMENTAL RESULTS 
Experiments were performed on the Intel iPSC/860 hy- 

percube, a network of HP 9000/735 and a network of Sun 
Sparcstations using various number of processors. The 
measured time was averaged over 50 frames of a video 
sequence, using a set of five video sequences: Football, 
Table Tennis, Salesman, Mass America, and Swing. All of 
these sequences are very representative of different kind of 
motion and are very useful regarding motion estimation. 

The time to process 50 frames was not necessarily the 
same in each processor, so the average was also taken over 
all the processors. Depending on the availability of pro- 
cessors, several such set of measurements were taken using 
1, 2, 4, 8, 16, 32 and 64 processors for each set. All the 
timing data were measured by using an Express function 
extime(), which provides microsecond granularity. 

As input, we used a constant bit-rate of 5 Mbps, with 
a I-P frame distance of 3, while the search window was 
of f l l  pels for P-pictures and f10 pels for B-pictures. 
To measure the quality of the video, we used the Peak 
Signal-to-Noise Ratio (PSNR), as there exists no good 
and simple metric for this measure [4]. The PSNR of a 
video is defined as follows: 

Namc of Sequence 

Football 

255 x 255 
M S E  P S N R  = 10 loglo 

Average PSNR 

Full Serach (dB) Log Search (dB)  

37.1060 34.5281 

where MSE is the Mean Square Error. The larger the 
PSNR, the better the quality. Table 1 shows the average 
PSNR for different sequences. 

TABLE 1: PICTURE QUALITY (LUMINANCE ONLY). 

~~ 

Swing 4 1  4689 1 37 3657 

I Table Tennis I 38.5169 I 35.7497 I 
I Salesman I 39.8703 I 34.5039 I 

the encoding process for both search methods. Figures 6 
and 7 depict the encoding rates for both search methods. 
Table 2 shows the timings of the computational modules 
of the Swing sequence using various number of processors 
on the Intel iPSC/860 for log-search implementation. Due 
to stringency of space, similar tables for other sequences 
and for full-search are omitted. 

Fig. 2 .  Comparisons of modules: full search. 

C n m p l r m  of modulpr 
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Fig. 3. Comparisons of modules: 2D-log search. 

4 CONCLUSIONS 
In this paper, an efficient and scalable parallel imple- 

mentation of the MPEG-2 encoder was described. The 
data distribution strategies were discussed. The im- 
plementation was performed using the SPMD paradigm 
while various MPEG-2 modules were parallelized. No- 
ticeable improvements in speedup were achieved. In our 
implementation, the 1 / 0  was not handled by dedicated 
processors, otherwise further improvement in speedup is 
expected. We used full-search and 2-D log-search for mo- 
tion estimation but our implementation allows inclusion 
of faster algorithms which can further reduce the total 
computation time. We have used only 64 processors of the 
Intel IPSC/860 and even fewer processors for the networks 
of workstations. We have achieved an average frame rate 
of 4.15 fps and the figures show that the speedup is in- 
creasing with the number of processors. Therefore, by us- 
ing more processors, it is easy to have real-time MPEG-2 
video encoder [2]. 
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TABLE 2: TIMINGS (MILLISECOND) FOR Swing SEQUENCE: iPSC/SSO. 

Motion Estimation 3687.91 1855.46 938.85 

Name of module I 
478.44 245.49 127.07 66.41 

Number of Processors 

16 32 64 

Motion Compensated Prediction 

DCT Type Estimation 

Discrete Cosine Transform 

56.87 28.65 14.56 1 7.45 1 3.85 1 1.98 1 1::: 1 
59.56 29.97 15.24 7.82 4.04 2.10 

339.86 170.99 86.55 44.19 22.52 11.62 6.05 

Inverse Quantization 

I Quantization and VLC I 1595.28 I 702.34 I 356.46 I 181.96 I 93.60 I 48.49 1 25.27 I 
155.73 78.40 39.77 20.34 10.48 5.45 2.85 

Inverse DCT 328.41 165.30 83.89 42.80 21.98 11.37 5.90 

I Total I 6295.51 1 3248.17 I 1714.15 I 929.32 I 547.10 I 340.17 I 235.07 I 

Calculation of Statistics 

I 

130.80 65.85 33.42 17.10 8.80 4.59 a.43 

Fig. 4. Overall speedup: full search. 

ODrmll speedup 

Calculation of Others 141.09 i6i.a2 145.31 

[7:1 - _ _  

199.28 136.34 13’1.50 124.04 

Fig. 5. Overall speedup: 2D-log search. 
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