
PARALLELIZATION OF MPEG-2 VIDEO ENCODER FOR PARALLEL AND
DISTRIBUTED COMPUTING SYSTEMS

Shahriar M. Akramullaht, Ishfaq Ahmadt, Ming L. Liout
t Department of EEE, HKUST, t Department of Computer Science, HKUST

Clear Water Bay , Kowloon, Hongkong

Abstract-In this paper, a parallel implementation of the
MPEG-2 video encoder on various parallel and distributed
platforms is presented. We use a data-parallel approach
and exploit parallelism within each frame, which makes
our encoder suitable for real-time applications where the
complete video sequence may not be present on the disk.
The Express environment is employed as the underly-
ing message-passing system making our encoder portable
across a wide range of parallel and distributed architec-
tures. The encoder also provides control over various pa-
rameters such as number of processors, size of search win-
dow, buffer management and bit-rate. It is flexible and
allows inclusion of fast and new algorithms for different
stages of the codec, replacing current algorithms. Com-
parisons of execution times, speedups as well as frame en-
coding rates using different number of processors are pro-
vided. In addition, our study reveals the degrees of par-
allelism and bottlenecks in various computational modules
of MPEG-2.

1 INTRODUCTION

VIDEO codec is comprised of an encoder and a de- A coder, which respectively performs compression and
decompression of video data. As a video consists of a huge
amount of data, these operations require a great deal of
processing in the order of billion operations/sec. Since
video encoding, specially in software, is much more com-
plex and time-consuming for real-time applications com-
pared to decoding, it is always advantageous to speed up
the computation. This paper presents a software parallel
implementation of a video codec (MPEG-2).

MPEG-2 embodies different modules some of which are
very computation intensive. It is a generic standard de-
signed to support variety of applications, several bit-rates
of 2 Mbps and up, and various qualities and services. The
encoder requires extensive computation to fully support
applications such as HDTV, video-on-demand (VOD),
video communications on ATM networks etc.

In [7] a SIMD implementation of the H.261 has been
reported with a frame rate of about 5 fps (frames/sec).
Parallel MPEG-1 video encoding with a performance of
about 4 fps has been documented in [4]. It was modified
[lo] to run on the Intel Touchstone Delta and the In-
tel Paragon. Although faster than real-time performance
has been claimed in [lo], the drawbacks are crucial. For
instance, the complete video sequence should be available
before encoding begins. Also, usable number of processors
to encode video of given length is limited, which restricts
the scdability of the problem. Furthermore, it has used
some special 1 / 0 capability offered by the Delta or the
Paragon for improved performance, and therefore is not

portable to other hardware platforms, e.g. a network of
workstations. There have been some other approaches to
parallelize codec operations of video sequences [l], [ll],
[12]. However, they need to use specialized hardware.

For our implementation, we have chosen the data-
parallel approach. Our implementation does not employ
any special-purpose hardware or programming primitives,
rather it is completely portable, flexible and scalable. The
implementation is performed on the Intel iPSC/860 and
various types of networks of workstations.

The rest of the paper is arranged as follows. Section
2 describes the parallelization methodology and discusses
data distribution and communication strategies. Section
3 provides experimental results. The last section con-
cludes the paper.

2 PARALLELIZATION METHODOLOGY

The parallel implementation of MPEG-2 video en-
coder has been carried out using a data-parallel or single-
program multiple-data (SPMD) programming paradigm.
The SPMD paradigm under Express [9] allows our soft-
ware to be portable across a wide range of architectures.
In order to make our parallel implementation scalable, we
assume that our target processor topology is a 2-D grid.
This has been achieved using Express’s Cubix program-
ming model which, in addition to providing overlapped
data reading capability, can setup a virtual processor grid
regardless of the hardware topology and then automati-
cally map the data onto this array of processors. This
allows us to control the granularity of the problem by en-
abling it to run on a few workstations in a coarse-grained
fashion as well as on massively parallel systems in a fine-
grained fashion.

The frame data is distributed among the processors,
each processor having some 8 x 8 blocks of data, depend-
ing upon the number of processors available. Motion esti-
mation is performed on independent macroblocks (16 x 16
block of pixels, abbreviated MB) while other operations
used 8 x 8 blocks as the basic unit of parallel processing,
unlike some approaches which use slice as the basic unit.

2.1 Data Distribution

Overhead due to interprocessor communication can be
the major limiting factor for any parallel application.
Therefore, partitioning the data among the processors
should be such that minimal interprocessor communica-
tion is employed. In the current implementation, the

0-7803-2972-4/96$5.000 1996 IEEE 834

whole frame is distributed as evenly as possible to each
processor. It is also possible to partition the data by just
apportioning the requisite part of the frame data (one or
more 16 x 16 macroblock) to the corresponding proces-
sors as the processors are mapped onto the 2-D grid (see
Figure l(a)) . But in that case, it necessitates essential
communication between processors as the search window
moves to the boundary during motion estimation .

Since each processor has enough memory to store the
entire search window, it is possible to eliminate use of
overwhelming amount of communication. In this case, the
frame data is distributed among the processors allowing
overlap (Figure 1 (b)). Here, each processor is allocated
some redundant data, which is necessary to form the com-
plete search area.

Let us consider P be the height and Q be the width
of the frame respectively, and let p be the total number
of processors to be used, with ph and p , as the number
of processors in the horizontal and vertical dimension re-
spectively. Thus, p = ph x p , . If the search window size
is the size of the MBs in a particular processor f W in
both dimensions, with overlapped (redundant) data dis-
tribution, given ph and p , , one can determine the size of
the local frame in each processor, which is given by

Flguce 1 (b) D.Ln diambuUon with 0veI.p

Fig. 1. Data distribution with and without overlap.

In our implementation, the number of processors to be
used is an input parameter. Therefore, it can be ported
to environments with a few powerful processors to those
with a large number of relatively slow processors as well
as to hardware platforms with limited memory or slow
communication.

2.2 Implementation Features

Our implementation of the MPEG-2 encoder generates
constant bit-rate streams and supports progressive as well
as interlaced video. It can also generate MPEG-1 se-
quences and can support up to three input formats: sepa-

rate YUV, combined YUV, and PPM. It outputs the en-
coded sequence as well as relevant statistics and verifies
legality of the user-given parameters within profile and
level. The current implementation does not support vari-
able bit rate encoding, scalable extensions, integer pel mo-
tion vectors for MPEG-1 (always produces half-pel motion
vector, which however, gives better quality), low-delay,
concealment motion vectors, editing of encoded video and
:scene change rate control. Our parallel implementation is
based on a sequential MPEG-2 implementation [SI.
2.3 Motion Estimation

Block Matching Algorithm (BMA) is the adopted mo-
tion estimation technique in MPEG. It finds the best
match for a pixel-block (e.g., 16 x 16) belonging to the
(current frame, within a user-defined search area in the
:previous frame. Since this employs a search for the best-
:matching block, a huge computation is involved, which
:leads to the motivation of parallel processing.

As the matching criterion we have chosen Mean Abso-
lute Difference (MAD), while the search range remains as
an input parameter. We have employed both exhaustive
;and fast search (2-D log-search [SI) patterns. The motion
estimation is performed only on the luminance samples.
'The chrominance displacement is approximated by halv-
ing the luminance displacement. In order to further im-
]prove prediction accuracy, after doing an integral full-pel
search, a half-pel search is also done on a neighborhood of
eight bilinearly interpolated luiminance samples from the
ireconstructed reference frame.
<2.g DCT and 4DCT

Discrete Cosine Transform (DCT) is used for spatial
iyedundancy reduction. In our implementation with full-
search motion estimation, for DCT, standard row-column
approach is used, while for IDCT, Wang's algorithm 1131 is
used. With log-search for motion estimation, both DCT
iind IDCT have used Wang's algorithm with double pre-
cision. The DCT and IDCT are performed on the 8 x 8
pixel blocks. The same serial program is executed on each
processor to compute DCT or IDCT for as many blocks
belonging to its local share of the frame data. So there is
110 interprocessor data movement.
2.5 Rate Control and Adaptive Quantization

Our implementation holds fast a single pass coding
viewpoint and does not use any a priori measurement
i o guide the allocation of bits at the global layers. The
complex bit allocation process is splitted into a number
of independent stages, coincident with the various layers
of MPEG-2 video. At the highest stage, alike [3], a group
of pictures (GOP) becomes the edge where variable size
coded pictures are mapped into a constant channel rate.
The allocation of target bit for the current picture be-
ing encoded is based or1 a global bit budget for the GOP,
and a ratio of weighted relative coding complexities of the

8358

three picture types (I, P, B). Coding complexity is esti-
mated in each processor as the product of the average
MB quantization stepsize and the number of bits gener-
ated by each processor. The local bit allocation for the
current MB is based on two measurements: the deviance
from estimated buffer fullness for the current MB and the
normalized spatial activity. The picture-fragment in each
processor is approximated and estimated to have a uni-
form distribution of bits. If the local trend of generated
bits begin to deviate from this estimation, a compensa-
tion factor appears to control the MB quantization scale.
The global bit budget is broadcasted to all the processors
to perform the allocation of target bit.

3 EXPERIMENTAL RESULTS
Experiments were performed on the Intel iPSC/860 hy-

percube, a network of HP 9000/735 and a network of Sun
Sparcstations using various number of processors. The
measured time was averaged over 50 frames of a video
sequence, using a set of five video sequences: Football,
Table Tennis, Salesman, Mass America, and Swing. All of
these sequences are very representative of different kind of
motion and are very useful regarding motion estimation.

The time to process 50 frames was not necessarily the
same in each processor, so the average was also taken over
all the processors. Depending on the availability of pro-
cessors, several such set of measurements were taken using
1, 2, 4, 8, 16, 32 and 64 processors for each set. All the
timing data were measured by using an Express function
extime(), which provides microsecond granularity.

As input, we used a constant bit-rate of 5 Mbps, with
a I-P frame distance of 3, while the search window was
of f l l pels for P-pictures and f10 pels for B-pictures.
To measure the quality of the video, we used the Peak
Signal-to-Noise Ratio (PSNR), as there exists no good
and simple metric for this measure [4]. The PSNR of a
video is defined as follows:

Namc of Sequence

Football

255 x 255
M S E P S N R = 10 loglo

Average PSNR

Full Serach (dB) Log Search (dB)

37.1060 34.5281

where MSE is the Mean Square Error. The larger the
PSNR, the better the quality. Table 1 shows the average
PSNR for different sequences.

TABLE 1: PICTURE QUALITY (LUMINANCE ONLY).

~~

Swing 4 1 4689 1 37 3657

I Table Tennis I 38.5169 I 35.7497 I
I Salesman I 39.8703 I 34.5039 I

the encoding process for both search methods. Figures 6
and 7 depict the encoding rates for both search methods.
Table 2 shows the timings of the computational modules
of the Swing sequence using various number of processors
on the Intel iPSC/860 for log-search implementation. Due
to stringency of space, similar tables for other sequences
and for full-search are omitted.

Fig. 2 . Comparisons of modules: full search.

C n m p l r m of modulpr

rlhwrarcamrm".

5. *,=am nrd n c

B cdo*llt-frwa-

*cdd.On#dk"

'0 I 2 3 d 5 6 7 8 9 10
MnhCkNvnbr

Fig. 3. Comparisons of modules: 2D-log search.

4 CONCLUSIONS
In this paper, an efficient and scalable parallel imple-

mentation of the MPEG-2 encoder was described. The
data distribution strategies were discussed. The im-
plementation was performed using the SPMD paradigm
while various MPEG-2 modules were parallelized. No-
ticeable improvements in speedup were achieved. In our
implementation, the 1 / 0 was not handled by dedicated
processors, otherwise further improvement in speedup is
expected. We used full-search and 2-D log-search for mo-
tion estimation but our implementation allows inclusion
of faster algorithms which can further reduce the total
computation time. We have used only 64 processors of the
Intel IPSC/860 and even fewer processors for the networks
of workstations. We have achieved an average frame rate
of 4.15 fps and the figures show that the speedup is in-
creasing with the number of processors. Therefore, by us-
ing more processors, it is easy to have real-time MPEG-2
video encoder [2].

836

TABLE 2: TIMINGS (MILLISECOND) FOR Swing SEQUENCE: iPSC/SSO.

Motion Estimation 3687.91 1855.46 938.85

Name of module I
478.44 245.49 127.07 66.41

Number of Processors

16 32 64

Motion Compensated Prediction

DCT Type Estimation

Discrete Cosine Transform

56.87 28.65 14.56 1 7.45 1 3.85 1 1.98 1 1::: 1
59.56 29.97 15.24 7.82 4.04 2.10

339.86 170.99 86.55 44.19 22.52 11.62 6.05

Inverse Quantization

I Quantization and VLC I 1595.28 I 702.34 I 356.46 I 181.96 I 93.60 I 48.49 1 25.27 I
155.73 78.40 39.77 20.34 10.48 5.45 2.85

Inverse DCT 328.41 165.30 83.89 42.80 21.98 11.37 5.90

I Total I 6295.51 1 3248.17 I 1714.15 I 929.32 I 547.10 I 340.17 I 235.07 I

Calculation of Statistics

I

130.80 65.85 33.42 17.10 8.80 4.59 a.43

Fig. 4. Overall speedup: full search.

ODrmll speedup

Calculation of Others 141.09 i6i.a2 145.31

[7:1 - _ _

199.28 136.34 13’1.50 124.04

Fig. 5. Overall speedup: 2D-log search.

REFERENCES
T. Akiyama et al., “MPEG2 video codec using image compres-
sion DSP”, IEEE Tran. on Consumer Electronics, VOL. 40, NO.
3, August 1994, pp. 466-472.
S. M. Akramullah, Real- Time MPEG-2 Video Encoding on Par-
allel and Distributed Systems, MPhil Thesis, The Hong Kong
University of Science and Technology, July 1995.
6. Fogg et al., “ISO/IEC Software Implementation of MPEGl
Video”, Proc. of the SPIE, VOL. 2187, Feb. 1994, pp. 249-257.
K. L. Gong, L. A. Rowe, “Parallel MPEG-1 Video Encoding”,
1994 Picture Coding Symposium, Sacramento, CA, Sept. 1994.
IS0 Committee Draft 13818-2, Generic Coding of Moving Pic-
tures and Associated Audio: Recommendation H.262, ISO/IEC
JTCl/SC29 WG11/602, Seoul, November 1993.
J. R. Jain and A. K. Jain, “Displacement Measurement and
its Application in Interframe Image Coding”, IEEE Tran. on
Comm., VOL. 29, NO. 12, Dec. 1981, pp. 1799-1808.

Fig. 6. Encoding rate: full search.

P-masdharhr

32 61
Na. c f P m

1 2 I 8 16

Fig. 7. Encoding rate: 2D-log search.

C. P. Loui et al.. “A Parallel lmolementation of the H.2
Video Coding Algorithm”, Proc. o j the IEEE Workshop on
VSPC, Raleigh, NC, September 2-3, 1992, pp. 80-85.

[8:l MPEG-2 Video Encoder, Version l . l a , MPEG Software Simu-
lation Group, July 1994.

[9;1 Express System User’s Guide, Parasoft Corp., CA, 1992.
[lo] K. Shen, L. A. Rowe, E. J. Delp, “A parallel implementation

of an MPEGl encoder: Faster than real-time!”, Proc. of the
SPIE, San Jose, CA, Feb. 1995.

[l 11 J. van der Meer, “The Full Motion System for CD-I”, IEEE
Tran. on Consumer Elec., VOL. 38, NO. 4, Nov. 1992.

[12] H. H. Taylor et al. “An MPEG EncoderImplementationon the
Princeton Engine Video Supercomputer”, Data Compression
Conj. 1993, Los Alamitos, CA, 1993, pp. 420-429.

[I31 Z. Wang, “Fast algorithms for the Discrete W Transform and
for the Discrete Fourier Transform”, IEEE Tran. on ASSP, VOL.
ASSP-32, NO. 4, August 1984, pp. 803-816.

837

